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Abstract . A- | I

Finite difference methods for solving problems of time-harmonic
acoustics are developed and analyzed. Multi-dimensional inhomoge-
neous problems with variable, possibly discontinuous, coefficients are
ccnsidered, accounting for the effects of employing non-uniform grids.
A weighted-average represeniation is less sensitive to tramsition in
wave resolution (due to variable wave numbers or non-uniform grids)
than the standard pointwise representation. Further enhancement in
method performance is obtained by basing the stencils on generaliza-
tions of Padé approximation, or geneialized definitions of the deriva-
tive, reducing spurious dispersion, anisotropy and reflection, and by
improving the representation of source terms. The resulting schemes
havé fourth-order accuiate local truncation error on uniformn grids and
third order in the non-uniform case. Guidelines for discretization per-
taining to grid orientation and resolution are presented.
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1 Introduction

Boundary-value problems governed by the Helmholtz equation model propa-
gation and evanescence of time-harmonic waves, describing a variety of physi-
cal phenomena, including acoustic, elastic and electromagnetic waves. When
the wavelength is of the same order as characteristic length scales asymptotic
methods usually cannot be employed and standard numerical methods such
as boundary element, finite element or finite difference methods are often
required.

Finite difference methods are a prevalent computational technique that
applies to variable coefficient as well as nonlinear problems. A general frame-
work for deriving higher-order finite difference schemes was proposed by
Lynch and Rice for ordinary differential equations {1] and elliptic partial
differential equations [2], and applied to the Helmholtz equation [3]. The
coeflicients of the stencil in this method are computed by solving a local sys-
tem of equations so that it is exact on a given space of polynomials. This is
repeated at every gird point at which the solution is unknown, contributing
to the cost of computation. Accuracy is further enhanced by judiciously se-
lecting the points at which soucce terms are evaluated and computing their
coeflicients in the same way.

A family of finite difference schemes with improved representation of a
range of wave numbers is presented and analyzed in [4]. Tam and Webb {5
optimize the dispersion propert.es of higher-order finite difference discretiza-
tion of the linearized Euler equations. In this approach the order of accuracy
of a stencil is allowed te drop, freeing a paramecter that is then designed to
improve dispersion respons.-.

Finite difference equations can be obtained by replacing the limit that
defines the derivative with a finite counterpart. The familiar definition of
the derivative may be generalized by introducing a resolution-dependent pa-
rameter leading to improved performance of the discrete methods. Aslong as
the limit behavior is unaltered consistency of the approximation is retained.
This idea was introduced by Mickens and employed as a means of generat-
ing stable finite difference schemes on uniform grids for several differential
equations in one spatial dimension ([6, 7] and references therein). Similar
discrete equations are obtained by new classes of finite element methods for
a variety of applications, including wave propagation (e.g.. [8] and references
therein). It should be noted that analysis of the computation ot waves [9]




indicates that accuracy depends not only on the product of wave number
and grid size (related to resolution), but also on product of other powers of
these quantities.

In this work we apply generalizations of the definition of the derivative and
of Padé approximation, to finite difference stencils for the Helmholtz equa-
tion in order to obtain improved dispersion behavior. Contrary to HODIE
methods, the coefficients are obtained explicitly. Multi-dimensional inhomo-
geneous problems with variable, possibly discontinuous, coefficients are con-
sidered, accounting for the effects of employing non-un¥orm grids. Several
finite difference stencils in one and two dimensions are presented in Sec. 2.
The analysis of the numerical methods gradually builds up to the general
case. Performance of the various formulations for homogeneous problems
with constant coefficients on uniform grids is examined by dispersion anal-
ysis in Sec. 3. This tool is employed to define the resolution-dependent
parameter for improved performance. In Sec. 4 the effect of the direction
of wave propagation relative Lo grid lines is accounted for. The effects of
non-uniform grids and discontinuities in physical properties are investigated
in Sec. 5. Standard f{inite difference methods are often not well-suited for
interface problems (see, e.g., [10, pp. 17-21]). However, appropriate repre-
sentation preserves thc order of accuracy of the continuous-coeflicieat, and
even constant-coefficient case. (Issues related to curved interfaces, as well as
curved domain boundaries are not treated herein.) The results of these anal-
yses are corrohorated by means of local truncation error analysis in Sec. 6,
accounting aiso for the effects of source terms. Numerical testing of these
stencils will be peiformed in future work.

2 Discrete Formulations
The Helmbholtz equation is

Lo+ K¢+ f=0 (1)

where k = w/c¢p is the wave number, w is the angular frequency and ¢y is the
speed of sound, and f is a given source distribution. Although not explicitly
addressed in the following, the case of k2 < 0 which corresponds to evanescent
waves or singuia- diffusion problems is also covered. An inhomogeneous
medium is represented by spatial variations in k(.r).




2.1 One dimension

Consider a uniform grid of size h with points at z; = jh. A typical start-
ing point is based on the standard finite difference stencil for the second

derivative 6 %, +
D::.r¢1 = Cad th 1 (2)
and pointwise (PT) representation of undifferentiated terms
D:s;+ k' + f; =0 (3)

where ¢; is the discrete solution at point j and f; = f(z;). On a non-uniform
grid this generalizes to

(¢j+1 - ¢; _."lf_¢5“)/h++h- + K¢+ f;=0 (4)

ht h- 2

where b~ and h* are the grid size before and after point j, respectively. For
a discontinuity in physical properties at point j the stencil becomes

bin1—b;  bi—di\ /ht+hT  (k)PhY 4+ (k7)hT
ht h- 2 kt 4+ h-

¢;+f; =0 (5)

where k= and k% are the wave numbers before and after point j, respec-
tively. These may be also considered as piecewise-constant approximations
of variable coefficients.

The undifferentiated terms may be represenied by a weighted average
(WA) suggested by linear finite elements (with piecewise linear approximation
of the source distribution, see, e.g., [11, pp. 45-46))

LR dis1 + 4?1 + ;-1 + fim+ 4({1' + fi-1

This scheme has the same asymptotic behavior as the pointwise representa-
tion, but improvement in performance on coarse grids is evident (see Sec. 3).
For variable coefficients this becomes

(K%¢)je1 + 4(K*9); + (K%d);_4 + Simi+4f; + fi
6 6

D:z¢j =0 (6)

D..¢; + =0 (7)

where (k?¢), = k*(z,)d;.




On a non-uniform grid the appropriate weighting is

biy1 — @, _ ¢; — d,-1 h* 4+ h~ N
ht h- 2 '

k? Lt h- )
T m(ff’m +2¢,) + W(Zé, +é,-1) )+

1{ ht -
3(),+_Lh_(f;+1+2f1) h++h_(2f,+f, 1)) = 0 (8)

Superior performance on non-uniform grids (see Sec. 5) is attained with no
increase in the number of points in the stencil. For a discontinuity in physical
properties at point j the stencil becomes

¢j+l - ¢J .' - ¢)-— + h-
Py

1 [ (k*)%ht k=)¢h-
§ (;ﬁ‘j—h (¢1+1 +2¢])+ ﬁl_"':-T( ¢J +¢J 1))

L[ bt , h- _ .
(h++h‘(f’“+ fi)+ h++h_(2fj+fj-l)) =0 (9)

Again, this may also be considered as a piecewise-constant approximation of
the case of variable coefficients.

Performance of finite difference schemes for the Helmholtz equation may
be enhanced by basing the stencils on more general definitions of the deriva-

tive dé o | )~ d(e)
. r+n)—-olx
o~ hm B(kk) A

(10)

where, for consistency

A =1 ()

This definition depends on kh, an indication of wave resolution by the grid.
For the Laplacian this reduces to the standard definition for grids of any size.

This generalization of the derivative definition may be applied for either
the first or second derivatives, or to both. On uniform grids all are equivalent.
Since the parameter depends on the grid size it is applicable to non-uniform
grids as well. Superior performance on non-uniform grids is obtained by




applying this concept to the second derivative alone (see Sec. 5). For the
uniform case this reduces to

biv1 — 20; + b T di+i +40; + ¢j-1 + Ha+4f+ fia
Bh? o 6 6

The resolution-dependent parameter 3 is defined to improve method per-
formance. For example, the parameter may be defined to eliminate numerical
dispersion

=0 (12)

_ 6 1—cos(kh)
~ (kh)? 2 + cos(kh) (13)

so that in simplified settings the phase is exact (EP), resulting in no trunca-
tion error under some circuinstances. This definition satisfies the consistency
requirement (11). In such cases the representation of source terms, which is
exact for piecewise linear variation, is no longer sufliciently accurate. A
modification of the representation of source terms that does not degrade the
higher-order accuracy of such schemes, similar to that employed by HODIE
methods [2], is

B

Gir1 — 2¢; + ¢ LR $i+1+ 46, + ¢, + fivija + fi+ fic12
Bh? 6 3

(suggested by linea: finitc elements with piecewise quadratic approximation

of the sonrce distribution) where f;1;/; is the load term evaluated at the

midpoint. For a piecewise linear source distribution this is identical to (12).
One possibility of the parameter

=0 (14)

12
1= ———— )
f 12 — (kh)? (15)
yields high-order representation
Di.di + I éis1 +104; + &, + finip+ fi+ fisip _ 0 (16)

12 3

(HO). This stencil (without the modification in the representation of source
terms) may also be derived by employing Padé approximation
D..
1+ R2/12D,,

¢, + k¢, + [, =0 (17)

D




(see, e.g., [12, p. 538]).

This concept, in its original form, which may be viewed as an average of
the pointwise and weighted-average representations of the undifferentiated
term [13], provides high-order performance on uniform grids, but severely
degrades in the non-uniform case. However, an appropriate generalization to
non-uniform grids, based on the concept of generalizing the derivative defi-
nition, leads to improved performance in the general case as well (see Secs. 5
and 6). Allowing discontinuities in physical ccefficients and accounting for
non-uniform grids the proposed scheme is

(¢j+1 —¢; ¢;— ¢j-1) /ﬂ'*h+ + B8 h-
2 +

h* h-
(o
i+ Bk

I +ht -h-
3 (F—h%m(?’f“‘“ +fi)+ m@;’-ﬁ—_h—_(k + 2fj-1/2)) =0

+\2 3+
1( (k7)" 5" (dj+1 +26;) +

s\ Gt v g (2¢; + ¢,~-1)) + 18)

where % = g(k*h%).

2.2 Two dimensions

Consider a two-dimensional uniform grid of size h with points at z; = ih
and y; = jh. For simplicity we consider the homogeneous case. A typical
starting point is the five-point representation

th¢i,j + Dyy¢i,j + k2¢i.j =
Giz1j —20i; + dicrj  Pije1 — 20 + dij-
+1. hz} J + J+ h2J J—1 +k2¢i.j = 0 (19)

which is the two-dimensional analog of (3). Non-uniform grids and material
discontinuities may be accounted for by generalizations of (4) and (5).

The two-dimensional counterpart of the idea that leads to (6), obtained
by employing bilinear finite elements, is a nine-point representation

Gis1.j-1 +20i41,; + Pigrj41 — 8Dij + Dicyjor + 2dic1; + it
h?
Gi-1y41 T 20ij41 + Bigrj41 — 3bi, + dicr -1 + 200 -1 + Divr1 -

+

+

h?




k? X
F(¢i+u+1 + 441, + 4i 41 + digr1,j-1 + 168 ;+ (20)

Gi—1,j41 +40ij1 +4dio1; + dicijo1) = 0

leading to a significant reduction in spurious anisotropy (see Sec. 4). HODIE
methods [2] also employ nine-point stencils in two dimensions. The band-
width of the ensuing linear algebra problem is typically slightly larger but
the difference in the cost of computation is insignificant.

Performance can again be improved by substituting Bk for h as in the one-
dimensional case (14), based on the same definitions (13) and (15), although
the methods are higher order only for propagaticn along grid lines.

In order to maintain higher-order performance on uniform grids in two
dimensions in all directions of propagation, the Padé approximation concept
is employed. The two-dimensional counterpart of (17) is

D:: qu 2
i i+ kg =0 21
1+ ,;; Du¢m + T+ ;‘,; Dw $ii + ¢ W ( )

This may be generalized to

h? h?
(l + ﬁ Dw) D rdij; + (1 + 1—2' Dn) Dyyt,‘b.',j'i'

h? h4
k? (1 + E(D" + Dy,) + kym Dqu) $i; = 0 (22)

where 4 is selected to further improve properties in directions other than
along grid lines, without effecting dispersion along grid lines and without
degrading higher-order behavior in all directions.

The standard Padé approximation is obtained by selecting ¥ = 1 which
yields the scheme

h2
(Dz'x + r)y'_: + F DIrDyy) ¢i.j+

k2
_§(¢i+1.j+1 + 106i41,; + 108; 41 + dig1,j-1 + 1004 ;+ (23)

Gi1j41 + 106 ;1 +100i_1; + dizyj—1) = 0

1




where

h? .
(D:rr + Dyy + ’5 Dr.rDyy) ¢IJ =

Givr,j—1 + 8Pig1; + igrj41 — 20 ; + dim1 o1 + Bdior, + dimr i
h?

Gimi st + 8Pija1 + Digr,41 — 208 + dim i1 + 8di -1 + div1,-1
h?

(24)

Neglecting higher-order terms in the Padé approximation by selecting vy = 0
leads to the slightly simplified stencil presented in [12, p. 542]

12

I
(Drz + Dyy + F D.t:rDyy) ¢i.1+
kz(q';;.,,l,_, + dij+1 +86ij + dij1 + bi-rj) = 0 (25)

The computational cost is essentially unalfected since the bandwidth of the
algebraic equations is identical. Another alternative presented in [12. p. 542]
is

B2

(D:J: + Dyy + '6— Dz'.t Dyy) ¢i.j+
k?
E(¢i+l.j+l +4dip1,; +4ii41 + bigr,j-1 + 520 ,+ (26)

Gi-1,j+1 +4i,-1 +49icyj + dicrj1) = 0
obtained by selecting v = 2.

Other values for 4 lead to other alternatives. In Sec. 4 it is seen that
selecting 4 = 2/5, which leads to the stencil

h?
(1)1‘1' + Dyy + —6— DIrDyy) ¢i.j+
k2
%(d’i“.jﬂ + 28¢is1,; + 280i 41 + biv1,-1 + 24465, + (27)

Picry4 2800 + 2801, + diiy-) = 0

minimizes dispersion along the diagonals. On the other hand, reducing sen-
sitivity of the scheme to direction of propagation is attained by the chaice of

8




¥ = 14/5, which yields the stencil

h?
(Dz.r + Dyy + _6“ D-N‘Dyy) éi,+
2
336(7¢i+l,j+1 + 16¢i415 + 16041 + Tdigr,,-1 + 2684, ,-+ (28)

Thici 41 + 161 + 1601, + Ty ,m) = 0

All these alternatives reduce 1o {H0) in one dimension. Thus the dispersion
analysis for (HO) in Sec. 3 describes the dispersion of all alternatives along
grid lines. In Sec. 4 the performance of various alternatives in other directions
is compared.

3 Spurious Dispersion

A homogeneous, isotropic continuum is non-dispersive. Waves travel at a

phase velocity
w

=L = (29)
and energy propagates at the group velccity
Ow
== 30
Cg ak 8¢ ( )

and so both are identical.

For the discrete representation this is usually uo longer the case. Each
stencil can be characterized by an approximate wave number A = k5(kh),
which depends on wave resolition and thns accounts for numerical dispersion.
The phase velocity in the di:crete case is

w :
C::.k—hzﬁ(.o (3‘)
and the numerical group velocity is
Ow
h
G = G
_ Ow Ok
T Ok Ok
akh\ ! N
= -(_)_A— € (32)

9




On a uniform grid in one dimension a numerical solution in the form of
a plane wave is

é; = exp(ik*h) (33)
PT For point j the pointwise representation (3) of the plane wave solution
yields
0 = exp(ik*h) — (2 - (kh)?) + 1/ exp(ik*h)
= 2cos(k"h) — (2 - (kh)?) (34)
leading to the dispersion relation
k*h = arccos (1 — (kh)?/2) (35)

In one dimension the number of grid points in a wave is
G =27 [(kh) (36)

The discrete solution represents propagation in the range kh < 2 which
corresponas to a limit of approximately three grid points per wave-
length. Within this range the numerical phase velocity is thus

c:/co = kh/ arccos (1 - (kh)2/2) (37)

and the numerical group velocity is

chfeo = \f1 — (kh)2/4 (38)

Both are slower than the speed of sound in the material .

WA Similarly, for the weighted-average representation (6) the dispersion

relation is (kR
My = 1- (kR)7/3
k™*h = arccos (1 T (kh)e/6 (39)

representing propagation in the range kh < /12, a limit of approxi-
mately two grid points per wavelength. Within this range the numerical
phase velocity is obtained directly from the dispersion relation and the
numerical group velocity is

chleo =\t = (kh)2/12 (i + (kh}?/6) (40)

Both are faster than the speed of sound in the material.

10




EP The resolution-dependent parameter 3 may be defined so that discrete
representations are non-dispersive (13) as is the case for the continuum.
In one dimension this formulation has zero local truncation error for
the homogeneous, constant coefficient case on uniform grids, and the
phase and group velocities are exact. Careful generalization leads to
improved performance on general configurations.

HO The higher-order representation (15) is au approximation of the exact
phase definition (13) on uniform grids. The resulting higher-order dis-

persion relation
hp 1 —5(kh)?/12
k™h = arccos (—-————l T kR 12 (41)

is a (1,1) Padé approximation, representing propagation in the range
kh < /6, a limit of approximately 2 1/2 grid points per wavelength.
Within this range the numerical phase veiocity is again obtained di-
rectly {from the dispersion relation and the numerical group velocity
is

chjco = /1 = (kh)3/6 (1 + (kh)*/12) (42)
Both are slower than the speed of sound in the material. The power
series expansion of the dispersion relation

R ) R U
k"h ~ kh + 180 +l2096—kh

demonstrates the higher-order nature of this representation.

(43)

Dispersion of the various formulations is plotted in Fig. 1. Note that the
region of primary interest is (G > 4, a resolution of at least four grid points
per wavelength. Within this region the errors in the pointwise and weighted-
average representations are similar, and the asymptotic behavior is the same
(see Sec. 6). However, even approaching the limit of resolution, and certainly
beyond it, the weighted-average performance is superior. For example, at
the limit of resolution (G = 4) there is a 38% error in the group velocity for
the pointwise representation, whereas in the weighted-average representation
the error is only 26%. The higher-order method offers significantly superior
representation, an error of only 7% in group velocity at (¢ = {1, and the
exact-phase method provides dispersion-free solutions.

11
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Figure 1: Phase and group velocities of one-dimensionai discrete formula-
tions.
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4 Spurious Anisotropy

On the uniform grid in two dimensions a numerical solution in the form of a
plane wave oriented at angle 6 to the grid lines is

é:.; = exp(ik*h cos 0) exp(ik"h sin 0)’ (44)

PT For point ¢z, j the pointwise representation (19) of the plane wave solution
yields

0 = exp(ik"hsinf) + exp(ik*h cos 0) — (4 — (kh)?) +
1/ exp(ik*h cos 8) + 1/ exp(ik"k sin 0)
= 2(cos(k"h cos 6) + cos(k*hsin0)) — (4 — (kh)?)  (45)

leading to various dispersion relations, depending on the angle of orien-
tation 8. When the wave is aligned with the grid (e.g., 8 = 0) this leads
to the one-dimensional dispersion relation (35). The other extreme case
occurs when the wave is criented in the direction of cell diagonals (e.g.,
0=m/4)

k*h = V2arccos (1 — (kh)?/4) (46)

The discrete solution represents propagation in the range kh < /8.
Within this range the numerical phase velocity is again obtained di-
rectly from the dispersion relation and the numerical group velocity

18
chfco = /1~ (kh)?/8 (47)

Both are slower than the speed of sound in the material. It is interesting
to note that the pointwise representation is more dispersive when waves
are oriented along the grid.

WA Simularly, for the weighted-average representation (21) dispersion rela-
tions are obtained from

4 (6 - (kh)2) - (1'2 + (kh)’) cos(k"h cos 0) cos(k*h sin 0)- (48)
2 (3 + (kh)2) (cos(k"h cos 0) + cos(k*h sin 0)) = (




When the wave is aligned with the grid this leads to the known one-
dimensional dispertion relation (39) and for waves parallel to cell diag-
onals | (k)26
khh = D 49
ﬁarccos(l-*_(kh)z/m) (49)
representing propagation in the range kh < +/24. Within this range
the numerical phase velocity is obtained directly from the dispersion
relation and the numerical group velocity is

chfeo = /1 = (kh)?/24 (1 + (kh)?/12) (50)

Both are faster than the speed of sound in the material. The weighted-
avecage representation is also more dispersive for waves that are ori-
ented with the grid.

HO Dispersion relations for the higher-order representation with 3 defined
in (15) at various angles of orientation may be found in similar fashion.
For waves aligned with cell diagonals the relation is identical to that of
the pointwise representation at this angle (46), and the same holds for
the wave velocities. This representation is thus higher order only for
waves oriented along grid lines.

Representations that cre truly higher order in all directions of propa-
gation are based on (22). For waves aligned with the grid this leads to
the higher-order dispersion relation (41) and along cell diagonals the
relation is

e 64/1 + (1 = 7)(kh)4/144 — (4 + (6 — 7)(kh)?/12)
kh—\/ia.rccos( 2T (kR 12

(51)
By examining the power series expansion of this relation
kh)®  (kh)
Kb k4 (57 — 2) SRl (KR). 52
v+ (7 = 25760+ 6768 (52)
it is clear that the value of vy = 2/5 minimizes dispersion in the direction
of cell diagonals. On the other hand, v = 14/5 minimizes the difference
between the dispersion along grid hines and in the direction of cell

14




diagonals, as seen by comparison to the power series expansion of the
higher-order dispersion relation along grid lines (43). Dispersion in the
direction of cell diagonals for various values of ¥ is plotted in Fig. 2. As
expected, the stencil with ¥ = 2/5 is essentially non-dispersive in the
region of primary interest with a resolution of at least four grid points
per wavelength.

The ratio between numerical -ispeision along grid lines and along cell
diagonals is shown in Fig. 3. By dcsign, the stencil with 4 = 14/5 is the
least anisotropic in the range of at least four grid points per wavelength.
This is corroborated by the polar plots in Fig. 4, showing the variation
in phase velocity with angle of orientation for various resolutions. Note
that the figure shows (c!/co)* to accentuate deviations from the exact
value of unity. As expected, all the schemes perform identically along
grid lines, but behavior in other dircctions is determined by the choice of
+. Differences among the various cases become more pronounced with
reduced resolution, but in general are not extreme. The two schemes
that stand out are indeed ¥ = 2/5 which minimizes dispersion along
diagonals, and hence overall, and 4 = 14/5 which reduces anisotropy.

EP The case that is non-dispersive in one dimension (13) may be treated
similarly. In this case there is no dispersion for waves aligned with
the grid and the dispersion relation for waves in the direction of cell
diagonals is

1 +2 cos(kh
k*h = V2 arccos (2 1 +2 cos(kh) (53)
5 + cos(kh)
The numerical phase velocity is again obtained direcily from the dis-
persion relation and the numerical group velocity is

c_g |74+ 5cos(kh) (5+cos(kh) (54)
o~ \ THcos(kh) \_ vai6 ’

This representation is obviously less dispersive for waves thai are ori-
ented with the grid.

Dispersion in the direction of cell diagonals of the various formulations
is plotted in Fig. 5. Recall that the region of primary interest is ¢ > 4, a
resolution of at least four grid points per wavelength. Dispersion properties of

15
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Figure 2: Phase and group velocities along cell diagonals of higher-order
discrete formulations based on generalized Padé approximation.
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Figure 4: Polar plots of anisotropy in (¢f/co)* of higher-order discrete for-
mulations based ou generalized Padé approximation.
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each scheme at arbitrary orientations are bounded on one hand by dispersion
along grid lines shown in Fig. 1, and on the other hand by dispersion along
cell diagonals shown in Fig. 5. Performance of the pointwisc and weighted-
average schemes improves the farther the orientation of propagation is from
the direction of grid lines. The same holds for the higher-order schemes of
interest with 4 = 2/5 and 4 = 14/5. For the (EP) method the opposite
occurs, so that performance of this scheme is vastly superior along grid lines.
This scheme is higher order only along grid lines, but it still maintains a high
degree of phase accuracy in all orientations.

The resolution-dependent parameter 8 may be defined so that the nu-
merical representation is non-dispersive for waves at any given angle of ori-
entation. For example

12 1 —cos (\/-2-kh/2)
(kh)? 2 4+ cos (\/ikh/Z)

eliminates dispersion of waves along cell diagonals. Similar performance was
attained in the context of finite element methods [14]. In general, how-
ever, the direction of wave propagation is not known in advance and there
is a concern that defining 8 for any orientation other than along grid lines
may degrade performance on non-uniform grids, as discussed in the follow-
ing section. Furthermore, grids should be aligned with dominant directions
of propagation to the extent possible. For these reasons it is preferred to
maintain dispersion-free discrete solutions along grid lines.

Numerical dispersion is thus sensitive to the orientation of wave propaga-
tion. The two extreme cases are along grid lines shown in Fig. 1, and along
cell diagonals shown in Fig. 5. The largest change in dispersion properties
possible is thus the ratio between the two, shown in Fig. 6. Recall that the
region of primary interest is G > 4, a resolution of at least four grid points per
wavelength. For highly resolved phenomena the performance of all schemes
is similar and quite good. As wave resolution is reduced only the higher-
order schemes (with values of 4 shown) retain a low level of anisotropy. Of
the other schemes, approacting the limit of resolution and certainly beyond
it, the pointwise method is clearly more sensitive to direction of propaga-
tion. For example, at the limit of resolution (G = 4), there is 8% anisotropy
in the pointwise representation of phase velocity, whereas the anisotropy of
other methods is at most about half that value. This becomes even more

8=

(39)
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pronounced in group velocity.

Figure 7 shows the variation in phase velocity with angle of orientation
of different schemes at various resolutions. For presentation purposes the
figure shows (c:,‘/co)". Note that the plot for (PT) does not include the case
of G = 3 since this scheme no longer represents propagation at this low
resolution, which, in any event, is outside the region of primary interest of
G > 4. It is clear from these plots that the numerical phase velocity is less
than the speed of sound in the material in all cases shown except for (WA).
Close examination of Fig. 4 indicates that this is true of higher-order methods
only with 4 > 2/5. With the exception of (EP), all the schemes considered
exhibit superior dispersion behavior along cell diagonals. This would not hold
for higher-order methods with v > 14/5, but there is no apparent motivation
to pursue such methods in the first place. As mentioned, employing (55)
eliminates dispersion along cell diagonals, leading to a version of (EP) with
superior dispersion behavior along diagonals that is similar to other schemes
in this regard.

Overall, high wave resolution or higher-order methods are required if
anisotropy is a concern. Of the methods that are not high order, on grids with
lower resolution, the weighted average representation and its enhancements
are much less anisotropic than the standard pointwise representation.

5 Spurious Reflection and Transmission

Reflected and transinitted waves are generated by incident waves at disconti-
nuities in physical properties. Numerical dispersion of discrete formulations
gives rise to incorrect representation of these phenomena at transitions in
wave resolution.

5.1 Grid transition

In a homogeneous material no reflection should occur. However, chauges in
grid size alter wave resolution giving rise to spurious reflection and transmis-
sion due to numerical dispersion, phenomena that may be characterized in
a manner similar to that of waves at discontinuities in physical coefficients.
These phenomena are well known [15], have been carefully analyzed [16] and
numerically demonstrated [17].




Phase velocity

Group velocity

- e W e T eam e e

. 4
L . i
0 0.1 0.2 0.3 0.3 0.5

1/G

176

Figure 6: The ratio of numerical dispersion along grid lines and along cell
diagonals for two-dimensional discrete formulations.

22




Figure 7: Polar plots of anisotropy in ("l (&) 1 of two-dimensional discrete
1 py P
formulations.
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Consider » one-dimensional configuration discretized by a uniform grid
of size h~ to .ie left of the origin and a uniform grid of size At to its right.
Due to the transition in grid size at the origin, an incident plane wave of unit
magiitude traveling in the positive direction with discrete values given in
(33) for j < 0 generates spurious transmission such that ¢o # 1 and spurious
reflection of magnitude ¢y — 1. The numerical solution is thus

6 = | XK h7Y + (80 — 1)/ exp(ik* ™)', j <0 (56)
77 Ldoexp(ik* Rty 720

where the dispersion error is represented by the numerical wave numbers
E . . . .
k"® = kh(kh*), and the transmission error is represented by @o. In particular

& = doexp(ik™ ht) (57)
b1 = doexp(ik* h™) = 2isin(k*"h7) (58)

PT The pointwise representation (4) of this solution at the origin yields

0 = 2 (451 = (1 = (kh*)?/2)¢o + ¢ —(1— (kh')2/2)¢o)

h* + b~ h+ h-
_ 2 (d&oexp(ik"* ht) — cos(k* h¥)do +

h+ + h- h+

doexp(ikh h™) = 2isin(k*"h~) — cos(k"—h‘)d)o)
h_
95 anf bt pt+ ainl bh h- RITEN e

- o if - ((sm(l;l+ ht) + Vm(Lh_ h )) bo — 25111(1;1— h ))(59)

where the second line was obtained by the dispersion relation for the
pointwise representation (35). Thus

2/1 = (kh=)?/4
do =
V1= (kh=)2/4 4+ /1 = (kh+)2/4

which is valid in the range of resolution in which the pointwise formu-
lation represents propagation (along grid lines).

(60)

24




WA Similarly, the weighted-average representation (8) of the solution (56)
at the origin leads to spurious transmission

2\/1 = (kh=)2/12
do =
V1= (kh=)2/12 4 \/1 = (kh+)?2/12

which is valid in the range of resolution in which the weighted-average
formulation represents propagation (along grid lines).

(61)

HO Transmission for the higher-order representation with the parameter
defined in (15) is

1 — (kh-)2/6

bo = (1 = (kh—)3/12)

ST i- (kA6 1= (kh*)/6
(= (kb 7/12) T (1= (RR¥)2/12)

(62)

which is valid in the range of resolution in which the higher-order for-
mulation represents propagation (along grid lines).

EP The case that is non-dispersive in one dimension (13) may be treated
similarly. In this case the transmission is

sin{kh~)/h~

bo = 2 + cos(kh-)
7 sin(kh~)/h~  sin(kh*)/h*
2+ cos(kh~) 2+ cos(kht)

(63)

which is valid in the range of resolution in which the higher-order for-
mulation represents propagation (along grid lines).

Spurious transmission of the various formulations at different wave resolu-
tions is plotted in Fig. 8. In genera! the sensitivity to transition in grid size is
higher for coarser grids. The weighted-average representation is significantly
superior to the pointwise scheme on non-uniform: grids. The higher-order
and exact-phase formulations offer further improvement.
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5.2 Interface of physical properties

Discontinuities in physical properties give rise to wave reflection and trans-
mission. The relative amplitudes of the reflected and transmitted waves
depend on the ratio of wave numbers, which defines the character of the
discontinuity. The numerical representation of these phenomena by finite
element methods was studied in [18].

Consider a generalization of the previous configuration in which a discon-
tinuity in material properties as well as a jump in grid size may occur at the
origin, so that k= is the wave number to the left of the origin and k*—to
its right. An incident plane wave of unit magnitude traveling in the positive
direction exp(ik~z) for £ < 0 generates reflected and transmitted waves, so
that

k™ — 1)/ exp(ik*z),
- {FEIGO I 2t
where
2k-
90)= 7= (65)

The discrete solution is again (56) where the numerical wave numbers are

kM = kb (ktRE),

PT The pointwise representation (5) of the solution at the origin yields

0 = 2 ¢1—(1—(k+h+)2/2)¢0+¢~1-(1‘(k_h—)2/2)¢0)
T ht 4 ke h* h-
% sin(k" h*)  sin(k*"h) sin(k*"h™)
= Rtk (( T T R ) bo= 2"75—) (66)

where, again, the dispersion relation for the pointwise representation
(35) is employed. Thus

2k™\/1 = (k-h-)2/4
$o = — (67)
k=\/1 = (k=h=)/4 + k+\/1 — (k*h+)2/4
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WA Similarly, the weighted-average representation (9) of the solution (56)
at the origin leads to

~ 2k~ /1 = (k=h-)2/12
k1= (R R12 4 k1 = (kR )3/12

do (68)

HO Transmission for the higher-order representation with the parameter

defined in (15) is
- J1 = (k~h=)2/6
) UG
- V1= (k~h=)2/6 . V1= (k+h*)2/6
(1 = (k-h-)2/12) (1 — (k*h+)2/12)

o

EP The case that is non-dispersive in one dimension (13) may be treated
similarly. In this case the transmission is

- Sn(ERT) /(K h7)

_ 2 + cos(kh™)
T () P VG O
2 + cos(kh~) 2 + cos(kht)

Physical transmission depends on the ratio of the wave numbers. Nu-
merical solutions depend on this parameter and on the ratio of resolutions.
To find out which of the two parameters significantly effects the numerical
error in transmission consider the transmission error as a function of ratio of
resolutions for 6 grid points per wavelength to the left of the origin. This is
plotted for a ratio of the wave numbers equal to unity in Fig. 8 (top). Increas-
ing the ratio by one order of magnitude and by two yields the behavior shown
in Fig. 9. The difference between these plots is not significant indicating that
the error depends primarily on the ratio of resolutions. All the representa-
tions have the property that ¢o = ¢(0) if k*h* = k~h~. Again, superior
performance of the weighted-average representation and its enhancements is
evident.

28




"210)

+

Transmission error (k /k

100)

or (k /k =

L

Transmission er

0 0.5 1 1.5 2

v 12 L 2

A — A

0 0.5 1 1.5 2

k'h'/(k n )
Figure 9: Transmission error (¢ — ¢(0))/#(0) at wave number ratios of 10
(top) and 100 for 6 grid points per wavelength to the left of the origin.

29




6 Local Truncation Error Analysis

The local truncation error is the residual left by substituting the exact solu-
tion in the discrete representation. In the following, sufficient differentiability
is assumed for all functions involved.

6.1 Uniform grids

Consider the one-dimensional constant-coefficient case on a uniform grid. For
the pointwise representation (3)

¢(z;41) — 2¢(z;) + ¢(z;-1)

r= s +R9(z;) + f(z,)
h?® . ht . .
= $(e) + o)+ s (#() 4 44(2)) 4 () + (=)
= B+ o m)

where primes and superior Roman numerals indicate differentiation by the
argument. The second line is obtained by Taylor’s formula, where z;-; >
x~ 2 z; and z; 2 =t > 2,41, and the third line, which follows from the fact
that ¢ satisfies the Helmholtz equation, indicates consistency. The pointwise
scheme is thus second-order accurate.

The weighted-average representation (6) is similar on uniform grids

$(zj+1) — 2¢(z;) + é(z;-1) 4 é(xj41) + 44(z;) + d(z;-1) +

h? 6
f(zie1) +4f(z;) + f(zj-1)
6
(1 + (kg)z) ¢(xj+1) _2¢’E:J) + ¢(xj~l) + k2¢(1'j) +
f(-'l'j) + f(x.H'l) - 2f(6$j) + f('tj—l)
2
= 2 9%z) + O(K) (72

The weighted-average scheme is also second-order accurate. This ordes of
accuracy is retained in the case of variable coefficients (7).
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For the improved representations (14)

¢(x;41) — 26(z;) + d(z;-1) 442 $(z;s1) + 44(x;) + ¢(z-1)

T 3h? 6 +
S(Zja172) + f(z;) + f(25-1/2)
3
— B(kR)*\ d(zip1) — 2(z;) + M(2io1) | 0
= <1 + 6 ) 5 +k3¢(:c,)+
f(xj) + f(3j+l/2) - 2.[5:31') + f(.’tj_l/g) (73)

Employing the definition of 3 that leads to the high-order representation (15)
yields )
h : .

T= m(kzd""(%) - [*(z;)/4) + O(k®) (74)
justifying its name as a higher-order scheme. Note that if the source terms
were not represented appropriately there would be second-order terms in the
truncation error. The scheme that is dispersion-free in ore dimension (13)
has a truncation error

ht , )
T = > (kK (6" (2;) + K¢"(z;)) = [*(2;)/4) + O(F°) (75)

If the fourth derivative of the source vanishes the method becomes six-order
accurate. Furthermore, the truncation error is zero when all the derivatives
of the source from fourth order and higher vanish.

6.2 Non-uniform grids

In analyzing method performance on non-uniform grids a change of variables
from physical space to computational space is often considered, so that the
grid is uniform in the latter [19]. The order of accuracy of some methods
on non-uniform grids may drop in physical space. Nevertheless, in computa-
tional space it remains unchanged from the order in the uniform case. To a
certain extent grid stretching should reflect variation of the solution. In this
case accuracy in computational space is representative of the situation. In
practice, however, grid variation is determined by geometric considerations
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as well. The following results are thus presented in physical space, which
describes the more general case.
For the pointwise representation (4)

r oo (Hlodn)de)oden)) SRR )+ s

- - -\
(h+)? h:;z + (k™) 6¥(z;) +

((h*)¢"(a*) = (h7)'¢"(27) + K*é(z)) + f(x;)

b —h-
#(e5) + g e) +
!
60(h* + h-)
_ h* =A™ "y (h+)2 - h*h™ + (h-)2
- 3 ¢ (IJ) 4- 12

The pointwise scheme is indeed second-order accurate on uniform grids. but
may drop to first order in the non-uniform case.

Whether the scheme actually drops to first order or not depends on the
degree of grid stretching. If

h* —h™ = O(h*"), p>0 (17)

¢"(z;) + O(R%) (76)

the stretching is called algebraic [19]. With algebraic stretching the pointwise
scheme retains second-order accuracy. Otherwise the accuracy drops to first
order.

In contrast, for the weighted-average representation (8)

r = (¢(zj+l) ~ ¢(x;) _ ¢(1'j) - ¢($J-1)> /h+ +h- +

R+ h- 2

k3 ht h-

3 (m(‘#(zm) + 2¢(z,)) + m—:(%(l‘j) + ¢(x,--1))) +
Bt -

% (Em—_(f(&‘m) +2f(x;)) + E%F(?f(xj) + f(l'-j—n)))

2 kh*)*\ ¢(z;41) — d(z;
S M {(I | OMELCIR
(1 + (k’;-)z) ﬂx"";__ ¢(Ij)) + k¢(xj) +
1)+ g (U i) = @) + 1 (23) = Sas0)
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(R*)? — h*h™ + (h)?
- 12

first-order terms cancel out even on non-uniform grids so that second-order
accuracy is retained in any case. Again, these results apply to the case of
variable coefficients as well.

For the improved representations

; = ¢(z;41) — d(z;)  d(z;) = dzj-1)\ /B*h* +B~h”
B h+ h- 2
k? Btht
3 (ﬁm-—h?
B=h~

+ m(2¢(xj) + ¢(xj-1))) +

+ht
% (ﬂ—+’lf—+_ﬁ¥(2f(xj+x/z) + f(z;))

¢"(z;) + O(h*) (78)

+

(6(zj41) + 26(z;))

+ m%fh—_(f(mj)-i-?f(lj-x/z)))

_ 2 K28R R* Y ¢(zj41) - 6(2;)
= Bt + B A ((H 6 ) oot

(l+ kgﬂ_ﬁh_h.—) ‘b(mJ—l;z-_ ¢(‘z1)) +k2¢(11)+
2

(B*h* + B-h~)

(B*h* (f(2j012) — f(a)
+8h™(f(25) ~ f(x5-172))) (79)
For the definition of 3 that leads to the high-order representation (15)

(A* = h7)((h*)? + (R°)?)

f(z;) + 3

e r (K36"(2;) = ["(2;)/4) +

+\4 _ 35— N h=\2 _ -1\3 -1\4 . .
(B0 (P (PO = RO ) g oy 3
O(h%) (80)

the truncation error is third-order accurate on non-uniform grids (and, of
course, fourth order in the uniform case).
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7 Conclusions

In this work finite difference methods for solving problems of time-harmonig
acoustics are developed and analyzed. The well-known pointwise represen-
tation, egs. (3) and (19) in one and two dimensions, respectively, is second-
order accurate on uniform grids. However, accuracy may drop to first order
in the non-uniform case (4) unless sufficiently smooth grid stretching (77)
is employed. In multi-dimensional configurations the representation actually
improves the less aligned the propagation directions are with respect to the
grid.

A weighted-average representation, eqs. (6) and (21) in one and two di-
mensions, respectively, has the same asymptotic behavior on uniform grids,
but is less sensitive to low wave resolution and, more importantly, to di-
rection of propagation and transition in wave resolution (including material
interfaces). Performance in multi-dimensional configurations again improves
for propagation directions that are not aligned with the grid. In general,
anisotropy in numerical representation is reduced with increased wave reso-
lution. At lower resolution the weighted-average representation (21) is much
less anisotropic than the standard pointwise representation (19). Second-
order accuracy is retained on any non-uniform grid (8) at virtually no in-
crease in computational cost. These results hold for variable coefficients as
well.

Superior performance is attained by basing the schemes on a generalized
definition of the derivative (10) which incorporates a resolution-dependent
parameter. Improved schemes with higher-order accuracy are designed by
appropriate definition of the parameter (15), reducing spurious dispersion
and reflection. Defining the parameter for schemes which are, in some cases,
dispersion-free (13) leads to the same asymptotic behavior with improved
coarse grid accuracy. Source terms must be represented accordingly (14) so
as not to degrade the higher-order accuracy. These methods are, in general,
fourth-order accurate on uniform grids and third order in the non-uniform
case. The performance of these schemes in multi-dimensional configurations
is superior for any direction of propagation. Their performance improves
as propagation directions become aligned with the grid. In principle, grids
should thus be aligned with directions of propagation to the extent possible,
further enhancing the performance of these methods.

Schemes that exhibit higher-order behavior on uniform grids in all di-
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rections in two-dimensional configurations are derived on the basis of Padé
approximation and its generalization (22). The dispersion of these methods
(as well as their spurious reflection and transmission) along grid lines is iden-
tical to that of the higher-order method based on the generalized definition
of the derivative. Dispersion along grid diagonals is minimized by employing
4 = 2/5 which leads to (27). These methods are by far less anisotropic than
all other schemes. The value of 4 = 14/5 leads to the stencil with the lowest
degree of anisotropy (28).

In general, wave resolution (kh) should be kept as even as possible through-
out the grid to minimize spurious reflection and transmission. Sensitivity to
these phenomena is greater on relatively coarse grids.
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